闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掆偓杩濋梺閫炲苯澧撮柡灞剧〒閳ь剨缍嗛崑鍛暦瀹€鍕厸鐎光偓閳ь剟宕伴弽顓溾偓浣糕槈濡嘲鐗氶梺鍛婂姉閸嬫挸袙婢跺绻嗛柣鎰典簻閳ь剚鍨垮畷鏇熺節濮橆剛顔嗛梺璺ㄥ櫐閹凤拷 (0) +1 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柛顭戝亝閸欏繒鈧箍鍎遍幏瀣触鐎n喗鐓曢柍鈺佸枤濞堛垹霉绾攱瀚� (0) +1 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂撮檷閸嬫垿鎮楀☉娆嬬細妞も晜鐓¢弻锝夊箣閿濆棭妫勭紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� (0) +1
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掆偓杩濋梺閫炲苯澧撮柡灞剧〒閳ь剨缍嗛崑鍛暦瀹€鍕厸鐎光偓閳ь剟宕伴弽顓溾偓浣糕槈濡嘲鐗氶梺鍛婂姉閸嬫挸袙婢跺绻嗛柣鎰典簻閳ь剚鍨垮畷鏇㈠蓟閵夈儱鐎梺绉嗗嫷娈旈柦鍐枛閺岋綁寮崶銉㈠亾閳ь剟鏌涚€n偅灏柍钘夘槸閳诲秹顢樿缁ㄥジ鏌熸笟鍨鐎规洘鍎奸ˇ顕€鏌¢埀顒勬嚍閵夛絼绨婚梺鍝勬川閸嬬偤藟閻愮儤鍊垫慨妯煎亾鐎氾拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸℃ぞ绮℃俊鐐€栭崝褏绮婚幋鐘差棜闁秆勵殕閻撴洟鏌熼柇锕€鐏遍柛銈咁儔閺屻倝寮堕幐搴′淮闂佸搫鏈粙鎴﹀煡婢跺ň鏋庨柟閭﹀枤閳诲繒绱撻崒姘偓椋庢媼閺屻儱鐤鹃柣妯款嚙閽冪喖鏌i弮鍌楁嫛闁轰礁绉电换婵囩節閸屾碍鐏撻梺鍝勬-閸樺ジ鈥旈崘顔嘉ч柛鎰╁妼婵兘姊洪悷鏉挎闁瑰嚖鎷�>>

正在阅读:气吞万里如虎!GTX460一马当先横扫中高端气吞万里如虎!GTX460一马当先横扫中高端

2010-07-28 17:22 出处:PConline原创 作者:废铁 责任编辑:yaosichao

多形体引擎(PolyMorph Engine)介绍

  光栅引擎严格来说光栅引擎并非全新硬件,只是此前所有光栅化处理硬件单元的组合,以流水线的方式执行边缘/三角形设定(Edge/Triangle Setup)、光栅化(Rasterization)、Z轴压缩(Z-Culling)等操作,每个时钟循环周期处理8个像素。GF100有四个光栅引擎,每组GPC分配一个,整个核心每周期可处理32个像素。

  形体引擎则要负责顶点拾取(Vertex Fetch)、细分曲面(Tessellation)、视口转换(Viewport Transform)、属性设定(Attribute Setup)、流输出(Stream Output)等五个方面的处理工作,DX11中最大的变化之一细分曲面单元(Tessellator)就在这里。GF100中有16个多形体引擎,每组SM一个,亦即每组GPC四个。需要说明的一点是AMD显卡在多形体引擎方面的设计采用的是所有SM共用一个多形体引擎,而NVIDIA采用的是每组SM一个,这样也就避免了多形体引擎称谓显卡性能瓶颈。

  多形体引擎绝非几何单元改头换面、增强15倍而已,它融合了之前的固定功能硬件单元,使之成为一个有机整体。虽然每一个多形体引擎都是简单的顺序设计,但16个作为一体就能像CPU那样进行乱序执行(OoO)了,也就是趋向于并行处理。NVIDIA还特地为这些多形体引擎设置了一个专用通信通道,让它们在任务处理中维持整体性。

抖动采样(Jittered Sampling)实现更逼真画面

    DX11详细定义了显卡需要提供的特性,但对渲染后端的工作涉及甚少,所以NVIDIA做了多形体引擎,还有抖动采样。抖动采样不是新技术,长期用于阴影贴图和各种后期处理,通过对临近纹素(Texel/纹理上的像素点)进行采样来创建更柔和的阴影边缘。它的缺点也是非常消耗资源。

    DX9/10上抖动采样是分别拾取每一个纹素,DX10.1开始改用Gather4指令,NVIDIA则在硬件上使用单独一条矢量指令。NVIDIA自己的测试显示,这么做的性能大约是非矢量执行的两倍。

改进抗锯齿最高可实现32AA

  CSAA是在G80 GeForce 8800 GTX上引入的,当时最高支持16x,如今不但提高到了32x,而且将色彩取样和覆盖取样分离开来,在32x CSAA中分别有8个和24个,无论性能还是画质都有明显提升。NVIDIA宣称,GF100 CSAA从8x到32x的平均性能损失只有区区7%。

  在GF100上,Alpha to Coverage可以使用全部采样点(最多32个),而且有33个透明级别,透明多重采样抗锯齿(TMAA)的质量也因此得到了改进。

游戏计算(Compute for Gaming)

  首先,CUDA架构的实现途径就多种多样,CUDA C、CUDA C++、OpenCL、DirectCompute、PhysX、OptiX Ray-Tracing等等不一而足。这其中既有NVIDIA自己似有的开发方式,也有开放的业界标准规范,开发商可以自由选择。

  在游戏中,NVIDIA CUDA计算架构可以执行画质处理、模拟、混合渲染等等,实现景深、模糊、物理、动画、人工智能、顺序无关透明(OIT)、柔和阴影贴图、光线追踪、立体像素渲染等大量画面效果。值得注意的是NVIDIA这次新加入了队C++的原生支持。

《Metro 2033》里的景深效果

光线追踪演示DEMO

  NVIDIA还宣称,GF100的游戏计算性能相比GT200有了大幅提高,比如PhysX流体DEMO演示程序3.0倍、《Dark Void》游戏物理2.1倍、光线追踪3.5倍、人工智能3.4倍。

立体多屏环绕技术3D Vision Surround

  ATI Eyefinity可以支持六屏输出,而3D Vision Surround最多只能达到三屏,但它支持3D立体效果,是3D Vision技术的扩展增强版。遗憾的是,AMD Radeon HD 5000系列能单卡支持六屏输出,NVIDIA GF100却仍然只能同时驱动两台显示器,三台或者更多的话就需要两块GF100组建SLI系统。这样一来,双卡系统的性能当然会好很多,但成本也急剧增加。

  但也正因为不是GF100架构的全新技术,GT200 GeForce GTX 200系列同样可以支持3D Vision Surround。事实上,NVIDIA在CES上展示的系统使用的就是两块GeForce GTX 285。


  显示设备支持方面,3D立体系统需要三台同样支持3D Vision技术的液晶显示器投影仪或者DLP,单个分辨率最高1920×1080;如果是非立体系统(此时叫作NVIDIA Surround),任何普通显示设备均可,单个分辨率最高2560×1600。

键盘也能翻页,试试“← →”键

为您推荐

热门排行

DIY论坛帖子排行

最高点击 最高回复 最新
最新资讯离线随时看 聊天吐槽赢奖品
闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝堟缁€濠傗攽閻樻彃鈧绱撳杈ㄥ枑闁哄啫鐗勯埀顑跨窔瀵粙顢橀悙鑼垛偓鍨攽閿涘嫬浠х紒顕呭灦瀵偊鎮╃紒妯锋嫼闂備緡鍋嗛崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撴瑦銇勯弮鈧娆忈缚閹扮増鐓欑€瑰嫮澧楅崵鍥┾偓瑙勬磸閸斿秶鎹㈠┑瀣<婵炲棙鍔栭埢鏇熺節閻㈤潧啸妞わ綀妫勫嵄闁告稒娼欑壕濠氭煙閹规劦鍤欑紒鐙€鍨堕弻銊╂偆閸屾稑顏�闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇炲€哥粻鏍煕椤愶絾绀€缁炬儳娼¢弻鐔煎箚閻楀牜妫勭紒鎯у⒔缁垳鎹㈠☉銏犵婵炲棗绻掓禒濂告⒑閸濆嫬顏ラ柛搴f暬楠炲啫顫滈埀顒勫箖濞嗘挸绾ч柛顭戝枤瑜版垵鈹戦悙鑼憼缂侇喖绉堕崚鎺楀箻鐠囪尪鎽曞┑鐐村灟閸╁嫰寮崘顔界叆婵犻潧妫欓ˉ鐘炽亜閿斿搫鍔︽慨濠冩そ瀹曘劍绻濋崘鐐棝闂備胶鎳撻崵鏍箯閿燂拷